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Abstract

In this paper, the notion of star products with separation of variables on a Kähler manifold is
extended to bimodule deformations of (anti-) holomorphic vector bundles over a Kähler manifold.
Here the Fedosov construction is appropriately adapted using the geometric data of a connection
in the vector bundle. Moreover, the relation between the star products of Wick and anti-Wick type
is clarified by constructing a canonical Morita equivalence bimodule as bimodule deformation of
the canonical line bundle over the Kähler manifold.
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1. Introduction

Deformation quantization as introduced in[1] is a well-established and successful way
of understanding the transition from classical physics to quantum physics as a deformation
of the algebraic structures, see[15,18,20,36]for recent reviews. The classical observable
algebra is modelled by the complex-valued smooth functionsC∞(M) on the phase spaceM,
which is a Poisson manifold. In particular,C∞(M) is a Poisson algebra. The deformation
is done by means of a star product� which is an associativeC[[λ]]-bilinear multiplication

∗ Corresponding author.
E-mail addresses:nikolai.neumaier@physik.uni-freiburg.de (N. Neumaier),
stefan.waldmann@physik.uni-freiburg.de (S. Waldmann).

0393-0440/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(02)00188-2



178 N. Neumaier, S. Waldmann / Journal of Geometry and Physics 47 (2003) 177–196

for C∞(M)[[λ]] such that in zeroth order of the deformation parameterλ it coincides
with the pointwise product and in first order ofλ the �-commutator equalsi times the
Poisson bracket. In case of convergenceλ corresponds to Planck’s constant�. Existence
and classification of such products is now well established[4,14,16,19,28,30,33,37].

In this article, we shall consider a particular situation, namely whenM is a Kähler
manifold and the Poisson structure is induced by its Kähler symplectic form. Deformation
quantization of Kähler manifolds has a long history dating back to the work of Berezin[2,3].
The relation between Berezin–Toeplitz quantization and star products has been explored
by various authors[10–13,25,26,29,34]. Since on a Kähler manifold, one has a compat-
ible complex structure it is meaningful to speak of bidifferential operators (and hence of
star products) which differentiate one function in holomorphic directions and the other in
anti-holomorphic directions only. This property of a star product was known for various
examples and led Karabegov to the notion of star products withseparation of variables. In
[22,23], he proved existence and gave a classification of such star products. In an alternative
approach, Fedosov’s construction was adapted to the Kähler situation and used to show the
existence of such star products as well[6], see also[32] for a classification in this context
and[24] for a comparison of both approaches.

It turns out that on a Kähler manifold one has (at least) three canonically given star prod-
ucts: the Weyl ordered Fedosov star product�Weyl as well as the Wick and anti-Wick star
product�Wick and�Wick, obtained by the above mentioned modified Fedosov construc-
tion, all using the Kähler connection as starting point. Moreover, the characteristic classes
of these three star products are explicitly known to be

c(�Weyl) = 1

iλ
[ω], c(�Wick) = 1

iλ
[ω] − iπc1(Lcan),

c(�Wick) = 1

iλ
[ω] + iπc1(Lcan), (1)

whereLcan = ∧(n,0)
T ∗M is the canonical line bundle ofM, see e.g.[21,26,32].

In [8], the notion of deformation quantization of vector bundles was introduced: ifE → M

is a (complex) vector bundle and� is a star product forM then a deformation quantization
ofE is a deformed right module structure• for Γ∞(E)[[λ]] with respect to�. It was shown
that such a• always exists and is unique up to equivalence. Moreover,• also induces an
associative formal deformation�′ of Γ∞(End(E))[[λ]] together with a corresponding left
module structure•′ such thatΓ∞(E) is deformed into a�′–� bimodule via•′ and •.
Finally, the bimodule gives aMorita equivalence bimodulefor the deformed algebras
(Γ∞(End(E))[[λ]] ,�′) and(C∞(M)[[λ]] ,�). In case of a line bundleE = L, one obtains
a star product�′ for C∞(M) = Γ∞(End(L)) and finally arrives at the classification of
star products up to Morita equivalence. In the symplectic case, two star products�′ and�

are Morita equivalent if and only if there is a symplectic diffeomorphismψ of M such that
ψ∗c(�′) − c(�) ∈ 2πiHdeRham(M,Z) is anintegralde Rham class, see[9].

The aim of this work is twofold: on one hand we shall construct particular bimodule
deformations•′, • for a complex vector bundleE overM using the ideas of Fedosov’s
construction as in[35] in order to obtain separation of variables for•′ and• as well, ifE
is (anti-) holomorphic. On the other hand, we give a Fedosov construction of the deformed
bimodule structure ofLcanwhich yields a Morita equivalence bimodule for�Wick and�Wick.
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According to(1) and the general classification theorem in[9] such deformations nece-
ssarily exist. So our main emphasise is the canonical and constructive way how it can be
obtained.

The paper is organised as follows. InSection 2, we collect some basic and well-known
results on the Fedosov construction and adapt them to the Kähler situation. In order to
handle the Weyl ordered, the Wick ordered and the anti-Wick ordered case simultaneously
we introduce a one-parameter family of fibrewiseκ-ordered products. InSection 3, we state
the main theorems of the Fedosov construction for the star products and the correspond-
ing bimodule multiplications. Up to here the results are essentially standard. InSection 4,
we investigate the case of (anti-) holomorphic vector bundles and show the separation of
variables properties of the Wick and anti-Wick ordered products.Section 5contains local
expressions for the deformed multiplications which can also be used to characterise them
globally. InSection 6, we give a deformed version of a Hermitian fibre metric and investi-
gate its compatibility with the holomorphic structure. Here we also give local expressions.
Finally, Section 7contains the construction of the canonical Morita equivalence bimodule
structure onLcan for �Wick and�Wick. In Appendix A, we have collected some standard
results on Kähler geometry in order to explain our notation.

Conventions. By C∞(M), we denote thecomplex-valuedsmooth functions and simi-
larly Γ∞(T ∗M) stands for the complex-valued smooth one-forms etc. Moreover, we use
Einstein’s summation convention in local expressions. Finally, we do not need the positive
definiteness of the Kähler metric. So all results are still valid onsemi-Kähler manifolds.
However, for ease of notation we shall not emphasize this in the text.

2. The Fedosov construction on Kähler manifolds

In this section, we shall briefly recall the setup for the Fedosov construction in order
to explain our notation where we mainly follow[35]. Details and proofs can be found in
Fedosov’s book[17]. For the additional structures on a Kähler manifold, we refer to[6,32]
as well as toAppendix A.

Given a complex vector bundleE → M over a Kähler manifoldM, we define the
following C[[λ]]-modules:

W :=
∞∏
s=0

Γ∞
(∨s

T ∗M
)

[[λ]] , (2)

W⊗ Λ• :=
∞∏
s=0

Γ∞
(∨s

T ∗M ⊗
∧•

T ∗M
)

[[λ]] , (3)

W⊗ Λ• ⊗ E :=
∞∏
s=0

Γ∞
(∨s

T ∗M ⊗
∧•

T ∗M ⊗ E
)

[[λ]] , (4)

W⊗ Λ• ⊗ End(E) :=
∞∏
s=0

Γ∞
(∨s

T ∗M ⊗
∧•

T ∗M ⊗ End(E)
)

[[λ]] . (5)
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ThenW⊗Λ• becomes a super-commutative associative algebra where the fibrewise product
is defined by(f ⊗α)(g⊗β) = f ∨g⊗α∧β. In particular,W ⊆W⊗Λ• is a commutative
sub-algebra. Using the fibrewise composition of endomorphisms ofE, we observe thatW⊗
Λ• ⊗End(E) becomes an associative algebra as well, which is no longer super-commutative
unlessE = L is a line bundle. We can viewW⊗Λ• as sub-algebra ofW⊗Λ• ⊗ End(E).
Finally,W ⊗ Λ• ⊗ E is a bimodule forW ⊗ Λ• ⊗ End(E) from the left and forW ⊗ Λ•
from the right. Besides the usual symmetric and anti-symmetric form degree degs and dega,
we have theλ-degree and thetotal degree, which is twice theλ-degree plus the symmetric
degree. One also has the operatorsδ = dxi ∧ is(∂i) andδ∗ = dxi ∨ ia(∂i) which satisfy
δ2 = 0 = (δ∗)2. If one definesδ−1a = 1/(k + l)δ∗a for homogeneousa with symmetric
degreek and anti-symmetric degreel such thatk+ l �= 0 andδ−1a = 0 otherwise, then one
has theHodge–de Rham decomposition

δδ−1 + δ−1δ + σ = id, (6)

whereσ denotes the projection onto the part with symmetric and anti-symmetric degree 0.
In the next step, one needs a symplectic connection∇ onM and a connection∇E for E.

For ∇, we shall always use the Kähler connection while∇E shall be specified later. One
has the induced connection∇End(E) = [∇E, ·] on End(E) and the connections extend to
super-derivations of anti-symmetric degree+1

D :W⊗ Λ• →W⊗ Λ•+1, (7)

DE :W⊗ Λ• ⊗ E→W⊗ Λ•+1 ⊗ E, (8)

D′ :W⊗ Λ• ⊗ End(E) →W⊗ Λ•+1 ⊗ End(E). (9)

ThenDE is a module derivation alongD andD′, respectively. A simple computation shows
thatδ super-commutes withD′, DE andD.

One observes that the curvatureRE of ∇E is an element inW ⊗ Λ2 ⊗ End(E) with
degsR

E = 0. ForRE and for the symplectic curvature tensorR ∈ W⊗ Λ2, see(A.7), we
have the Bianchi identitiesδR = 0 = δRE andDR = 0 = D′RE.

Now we pass to the deformed fibrewise products and bimodule structures. Originally,
Fedosov used the fibrewise Weyl product, but on a Kähler manifold one also has fibrewise
analogues of the Wick and anti-Wick product, see[6,24,32]. First one defines the fibrewise
operator

P = Λij is(∂i) ⊗ is(∂j) (10)

acting onW ⊗W, whereΛ = 1/2Λij∂i ∧ ∂j is the Poisson tensor in local coordinates.
ClearlyP is globally defined. As we have a complex structure the operators

P = gk%̄is(Zk) ⊗ is(Z̄%) and P̄ = gk%̄is(Z̄%) ⊗ is(Zk) (11)

are globally well defined as well and one hasP = 2/i(P−P̄). Finally, we need the fibrewise
Laplace operator

∆fib = gk%̄is(Zk)is(Z̄%), (12)
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which again is globally well defined and satisfies the relation

∆fib ◦ µ = µ ◦ (∆fib ⊗ id + P + P̄ + id ⊗ ∆fib), (13)

whereµ : W ⊗W → W denotes the fibrewise undeformed product ofW. We extend all
the operatorsP, P , P̄ , and∆fib toW⊗Λ•,W⊗Λ• ⊗ E, andW⊗Λ• ⊗ End(E). Now the
fibrewise Weyl product is defined by

a ◦Weyl b := µ ◦ e(iλ/2)Pa ⊗ b (14)

and clearly gives an associative deformation ofµ. For κ ∈ R, we define thefibrewise
equivalence transformations

S = eλ∆fib and Sκ = eλκ∆fib (15)

and the fibrewise products

a ◦κ b := Sκ(S−κa ◦Weyl S
−κb) = µ ◦ e(κ+1)λP+(κ−1)λP̄a ⊗ b. (16)

Clearly◦κ is again a fibrewise associative deformation ofµ and fibrewisely equivalent to
◦Weyl via Sκ. Besides the Weyl ordered case (κ = 0) the Wick ordered case (κ = 1) and
the anti-Wick ordered case (κ = −1) are of particular interest as hereP̄ respectivelyP are
absent in(16). We shall denote these fibrewise products by◦Wick and◦Wick.

We also observe that the bimodule structure ofW ⊗ Λ• ⊗ E can be deformed yielding
a bimodule structure with respect to the deformed products◦κ ofW ⊗ Λ• ⊗ End(E) and
W⊗ Λ•. We shall denote the corresponding bimodule multiplications by◦κ as well.

Remark 1. It is clear that∆fib, P , P̄ , and◦κ can be defined as soon as one has an almost
complex structure compatible with the symplectic structure on an arbitrary symplectic
manifold. In principle one can carry through Fedosov’s construction in this case as well
[25]. However, the resulting star products�κ seem to have no particular properties like
‘separation of variables’ for the casesκ = ±1. This only will happen on a (semi-) Kähler
manifold.

We finally mention some further relations between the various operators. First note that
[∆fib, δ] = 0 whenceSκδS−κ = δ for all κ. Moreover, since∇ is the Kähler connection we
have [∆fib,D] = 0 as well as [∆fib,D

E] = 0 and [∆fib,D
′] = 0. This impliesSκDS−κ = D

and henceD is a◦κ-derivation as well. Analogously,D′ andDE are (module-) derivations
with respect to◦κ. The following lemma is a slight variation of[6, Proposition 4.1]and
[17, Section 5.3].

Lemma 1. We haveSκR = R + κλ∆fibR = R + κλ+ and hence

D2 = i

λ
adκ(S

κR) = i

λ
adκ(R), (17)

as the Ricci form+, see(A.5), is central with respect to◦κ. Moreover, SκRE = RE and
hence

(DE)2 = i

λ
adκ(R) + RE and (D′)2 = i

λ
adκ(R − iλRE). (18)
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3. Fedosov star products and deformed vector bundles

Using the results of the previous section as well as the standard arguments of Fedosov’s
construction[16,35], we easily arrive at the following theorem.

Theorem 1. For any fixedκ ∈ R and any series of closed two-formsΩκ ∈ λΓ∞(
∧2

T ∗M)

[[λ]], there exist uniquerκ ∈W⊗Λ1, r′κ ∈W⊗Λ1 ⊗End(E) of total degree≥ 3 such that

δrκ = R + Drκ + i

λ
rκ ◦κ rκ + Ωκ and δ−1rκ = 0 (19)

and

δr′κ = R − iλRE + D′r′κ + i

λ
r′κ ◦κ r′κ + Ωκ and δ−1r′κ = 0. (20)

In this case, the super-derivations

Dκ = −δ + D + i

λ
adκ(rκ) and D′

κ = −δ + D′ + i

λ
adκ(r

′
κ) (21)

have square zero. The maps

σ : kerDκ ∩W⊗ Λ0 → C∞(M)[[λ]] and

σ : kerD′
κ ∩W⊗ Λ0 ⊗ End(E) → Γ∞(End(E))[[λ]] (22)

areC[[λ]]- linear bijections with inverses denoted byτκ andτ′
κ, respectively. Finally,

f�κg = σ(τκ(f) ◦κ τκ(g)) and A�′
κB = σ(τ′

κ(A) ◦κ τ′
κ(B)) (23)

define associative deformations ofC∞(M) andΓ∞(End(E)), respectively, and �κ is a
star product with characteristic class

c(�κ) = 1

iλ
([ω] + [Ωκ] − κλ[+]). (24)

Proof. The proof is completely standard and follows from[16,35] with some obvious
modifications. We only indicate the computation of the characteristic class: we definer =
S−κrκ whence clearly

δr = R − κλ+ + Dr + i

λ
r ◦Weyl r + Ωκ (25)

usingLemma 1and∆fibΩκ = 0. Moreover,δ−1r is some element of total degree≥ 3. Thus
the characteristic class of the Weyl ordered Fedosov star product� built out of r is simply
given by the expression in(24), see e.g.[31]. But � and�κ are equivalent as their Fedosov
derivatives are fibrewisely conjugate bySκ, see[5, Proposition 1]. �

For the deformed bimodule structure ofΓ∞(E) with respect to�′
κ and�κ we proceed

completely analogously to[35]. First we define

rEκ := i

λ
(r′κ − rκ), (26)
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which is a well-defined formal power series inλ asr′κ andrκ coincide in zeroth order ofλ.
Then we defineDE

κ :W⊗ Λ• ⊗ E→W⊗ Λ•+1 ⊗ E by

DE
κ = −δ + DE + i

λ
adκ(rκ) + rEκ , (27)

where adκ(rκ) is defined as usual andrEκ acts by◦κ-left multiplications. The following
construction is an immediate adaption of[35, Theorem 3]to ourκ-ordered situation.

Theorem 2. The Fedosov derivativeDE
κ satisfies

DE
κ (Ψ ◦κ b) = DE

κ Ψ ◦κ b + (−1)kΨ ◦κ Dκb, (28)

DE
κ (a ◦κ Ψ) = D′

κa ◦κ Ψ + (−1)%a ◦κ DE
κ Ψ (29)

and(DE
κ )

2 = 0, for a ∈W⊗Λ% ⊗End(E),Ψ ∈W⊗Λk ⊗E, andb ∈W⊗Λ•. Moreover,
σ : kerDE

κ ∩W⊗Λ0 ⊗E→ Γ∞(E)[[λ]] is aC[[λ]]- linear bijection with inverse denoted
by τEκ . Finally,

A •′
κ s := σ(τ′

κ(A) ◦κ τEκ (s)), (30)

s •κ f := σ(τEκ (s) ◦κ τκ(f )) (31)

defines a�′
κ–�κ bimodule deformation ofΓ∞(E).

Remark 2.

(i) In the particular case of a line bundleE = L, we obtain a star product�′
κ for

C∞(M)[[λ]] = Γ∞(End(L))[[λ]] with a corresponding bimodule deformation. Then
the characteristic class of�′

κ is given by

c(�′
κ) = 1

iλ
([ω] + [Ωκ] − κλ[+]) + 2πic1(L), (32)

wherec1(L) is the Chern class ofL. This follows either from[9, Theorem 3.1]or by
an analogous argument as in[35, Corollary 2].

(ii) In general,�′
κ and�κ are Morita equivalent deformations and a Morita equivalence

bimodule is given by(Γ∞(E)[[λ]] , •′
κ, •κ) [35, Proposition 1].

4. The Wick type properties of �Wick, �′
Wick, •Wick and •′

Wick

In this section, we shall consider the deformations�κ, �′
κ and the bimodule structures

•κ, •′
κ more closely in the caseκ = 1. Actually an analogous consideration can also be

carried out in the caseκ = −1 by almost trivial generalisations of the given results. We set
Ω = Ω1 = ΩWick.

First we need some additional notations that make use of the complex structure that enable
us to consider the splittings into holomorphic and anti-holomorphic part of the mappings
involved in the Fedosov construction. For a detailed discussion of this topic, the reader is
referred to[32, Appendix A]. By πz we denote the projection onto the holomorphic form
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part in the symmetric and the anti-symmetric part ofW⊗Λ•. Thenπz naturally extends to
a projection defined onW⊗Λ• ⊗End(E) andW⊗Λ• ⊗E as well. Analogouslyπz̄ denotes
the projection onto the anti-holomorphic form part ofW⊗ Λ• that also extends naturally
toW⊗ Λ• ⊗ End(E) andW⊗ Λ• ⊗ E. Obviously we haveσ = πzπz̄ = πz̄πz. From the
very definitions of the products and the fibrewise bimodule multiplications◦Wick, it is easy
to see that

πz(F ◦Wick G) = πz((πzF) ◦Wick G) and πz̄(F ◦Wick G) = πz̄(F ◦Wick (πz̄G)),

(33)

whereF,G are elements inW ⊗ Λ•, W ⊗ Λ• ⊗ E orW ⊗ Λ• ⊗ End(E) such that the
multiplications make sense. Using a local holomorphic chart ofM, it is easy to see that
δ = δz + δz̄, δ∗ = δ∗z + δ∗z̄ , D = Dz +Dz̄, DE = DE

z +DE
z̄ andD′ = D′

z +D′
z̄, where for

instanceD′
z(f ⊗α⊗A) := ∇Zif ⊗ dzi ∧α⊗A+ f ⊗ ∂α⊗A+ f ⊗ dzi ∧α⊗∇End(E)

Zi
A

andD′
z̄(f ⊗α⊗A) := ∇Z̄i

f ⊗ dz̄i ∧α⊗A+f ⊗ ∂̄α⊗A+f ⊗ dz̄i ∧α⊗∇End(E)
Z̄i

A. The

other splittings are defined similarly. Completely analogously to the definition ofδ−1 one
definesδ−1

z for a with dzi ∨ is(Zi)a = kaand dzi ∧ ia(Zi)a = la by δ−1
z a := 1/(k + l)δ∗za

in casek+ l �= 0 andδ−1
z a := 0 in casek+ l = 0. δ−1

z̄ is defined in the analogous way and
an easy computation yields the following decompositions:

δ−1
z δz + δzδ

−1
z + πz̄ = id and δ−1

z̄ δz̄ + δz̄δ
−1
z̄ + πz = id. (34)

Furthermore we have the relations:πzδ = δzπz, πzδ−1 = δ−1
z πz, πzD = Dzπz, πzDE =

DE
z πz andπzD′ = D′

zπz and analogous formulas with̄z instead ofz. Using the equation
δ2 = 0, the fact thatδ super-commutes withD, DE andD′ and the equations forD2,
DE2

andD′2 it is easy to derive super-commutation relations for the holomorphic and the
anti-holomorphic parts of the involved mappings, see also[32, Lemma 3].

Lemma 2. Let rWick, r′Wick andrEWick denote the elements ofW⊗ Λ1,W⊗ Λ1 ⊗ End(E)
constructed in the preceding section in caseκ = 1. Then we have the following:

(i) In caseΩ is of type(1,1) then in addition

πzrWick = 0 and πz̄rWick = 0. (35)

(ii) In caseΩ andRE are of type(1,1) then

πzr
′
Wick = πz̄r

′
Wick = 0 and πzr

E
Wick = πz̄r

E
Wick = 0. (36)

Proof. The proof of (i) can be found in[32, Lemma 4.1]. Applyingπz to (20), we obtain

δzπzr
′
Wick = D′

zπzr
′
Wick + i

λ
πz((πzr

′
Wick) ◦Wick r

′
Wick) and δ−1

z πzr
′
Wick = 0

usingπzRE = πzΩ = 0. Using the decompositionδ−1
z δz + δzδ

−1
z + πz̄ = id this implies

thatπzr′Wick is a fixed point of the mappingL : πz(W⊗Λ1 ⊗ End(E)) � a �→ δ−1
z (D′

za+
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(i/λ)πz(a ◦Wick r′Wick)) ∈ πz(W ⊗ Λ1 ⊗ End(E)) that raises the total degree at least by
1 and hence has a unique fixed point. ObviouslyL has 0 as trivial fixed point implying
πzr

′
Wick = 0 by uniqueness. Analogously one proves thatπz̄r

′
Wick = 0. Then the statement

for rEWick follows. �

From the explicit shape of the fibrewise products and the bimodule multiplications◦Wick,
it is obvious that the products�Wick, �′

Wick and the bimodule multiplications•Wick, •′
Wick

are completely determined by the knowledge of the projections on the totally holomorphic
respectively anti-holomorphic part of the respective Fedosov–Taylor series. Therefore, it is
worth deriving simpler formulas for these projections in order to investigate the products
and the bimodule multiplications.

Proposition 1. LetRE andΩ be of type(1,1) then the projections ofτWick(f), τ′
Wick(A)

andτEWick(s) for f ∈ C∞(M)[[λ]], A ∈ Γ∞(End(E))[[λ]] ands ∈ Γ∞(E)[[λ]] satisfy the
equations:

δzπzτWick(f) = DzπzτWick(f) − i

λ
πz((πzτWick(f)) ◦Wick rWick), (37)

δz̄πz̄τWick(f) = Dz̄πz̄τWick(f) + i

λ
πz̄(rWick ◦Wick (πz̄τWick(f))), (38)

δzπzτ
′
Wick(A) = D′

zπzτ
′
Wick(A) − i

λ
πz((πzτ

′
Wick(A)) ◦Wick r

′
Wick), (39)

δz̄πz̄τ
′
Wick(A) = D′

z̄πz̄τ
′
Wick(A) + i

λ
πz̄(r

′
Wick ◦Wick (πz̄τ

′
Wick(A))), (40)

δzπzτ
E
Wick(s) = DE

z πzτ
E
Wick(s) − i

λ
πz((πzτ

E
Wick(s)) ◦Wick rWick), (41)

δz̄πz̄τ
E
Wick(s) = DE

z̄ πz̄τ
E
Wick(s) + i

λ
πz̄(r

′
Wick ◦Wick (πz̄τ

E
Wick(s))) (42)

and σ(πzτWick(f)) = σ(πz̄τWick(f)) = f , σ(πzτ′
Wick(A)) = σ(πz̄τ

′
Wick(A)) = A,

σ(πzτ
E
Wick(s)) = σ(πz̄τ

E
Wick(s)) = s from which they are uniquely determined.

Proof. The proof ofequations (37) and (38)again can be found in[32, Proposition 4.3]. It
is easy to see that this proof can be slightly modified to obtain the remaining statements of
the proposition. �

As an easy consequence of the preceding proposition, we find the following lemma.

Lemma 3. LetU ⊆ M be an open subset of M and letRE andΩ be of type(1,1).

(i) For all f ∈ C∞(M) anti-holomorphic onU we haveπzτWick(f)|U = f |U.
(ii) For all g ∈ C∞(M) holomorphic onU we haveπz̄τWick(g)|U = g|U.

(iii) For all A ∈ Γ∞(End(E)) such that∇End(E)
Y A|U = 0 for all Y ∈ Γ∞(TM1,0) we have

πzτ
′
Wick(A)|U = A|U.
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(iv) For all B ∈ Γ∞(End(E)) such that∇End(E)
X B|U = 0 for all X ∈ Γ∞(TM0,1) we have

πz̄τ
′
Wick(B)|U = B|U.

(v) For all s ∈ Γ∞(E) such that∇E
Y s|U = 0 for all Y ∈ Γ∞(TM1,0) we have

πzτ
E
Wick(s)|U = s|U.

(vi) For all t ∈ Γ∞(E) such that∇E
Xt|U = 0 for all X ∈ Γ∞(TM0,1) we have

πz̄τ
E
Wick(t)|U = t|U.

Proof. To prove these assertions, one just has to show that the given expressions for the pro-
jections of the respective Fedosov–Taylor series solve the equations given inProposition 1
which is an easy task using that the projections ofrWick andr′Wick onto the totally holomor-
phic and anti-holomorphic form part vanish. �

From the results of the preceding lemma, we can deduce that the products�Wick, �′
Wick

and the bimodule multiplications•Wick, •′
Wick have the following Wick type properties.

Theorem 3. LetU ⊆ M be an open subset of M and letRE andΩ be of type(1,1).

(i) For all s ∈ Γ∞(E), f, g ∈ C∞(M) such that g is holomorphic inU we have

s •Wick g|U = sg|U and f�Wickg|U = fg|U. (43)

(ii) For all s ∈ Γ∞(E), A,B ∈ Γ∞(End(E)) such that∇End(E)
Y B|U = 0 for all Y ∈

Γ∞(TM1,0) we have

B •′
Wick s|U = Bs|U and B�′

WickA|U = BA|U. (44)

(iii) For all t, s ∈ Γ∞(E), A ∈ Γ∞(End(E)), f ∈ C∞(M) such that∇E
Xt|U = 0 for all

X ∈ Γ∞(TM0,1) and∇E
Y s|U = 0 for all Y ∈ Γ∞(TM1,0) we have

A •′
Wick t|U = At|U and s •Wick f |U = sf|U. (45)

(iv) For all A,B ∈ Γ∞(End(E)), f, g ∈ C∞(M) such that∇End(E)
X B|U = 0 for all

X ∈ Γ∞(TM0,1) and g anti-holomorphic onU we have

A�′
WickB|U = AB|U and g�Wickf |U = gf |U. (46)

To conclude this section, we want to discuss some more concrete situations where the
precondition that the curvature endomorphismRE is of type(1,1)naturally occurs. If(E, h)
is a (anti-) holomorphic vector bundle with Hermitian fibre metric then there exists a unique
connection∇E which is compatible with the (anti-) holomorphic structure as well as with
the Hermitian fibre metric (cf.Appendix A). In this case, it is known thatRE is of type
(1,1). Moreover, in this case the conditions of the preceding proposition under which the
products and the bimodule multiplications are just the pointwise ones just mean that the
respective sections resp. functions are locally holomorphic resp. anti-holomorphic. In the
case of a holomorphic vector bundle(E, h), a sections is called locally anti-holomorphic
on U if the sections9 of the dual bundleE∗ which is also a holomorphic vector bun-
dle defined bys9(s′) := h(s, s′) is locally holomorphic onU. Similarly a sectionA ∈
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Γ∞(End(E)) is called locally anti-holomorphic if the sectionA∗ defined byh(A∗s, s′) =
h(s,As′) for all s, s′ ∈ Γ∞(E) is locally holomorphic. In the case of an anti-holomorphic
vector bundle(E, h), one proceeds similarly to define the notion of locally holomorphic
sections.

5. Local expressions for the bimodule multiplications •Wick, •′
Wick

In this section, we want to consider the bimodule multiplications constructed above in
the case of a (anti-) holomorphic vector bundleE of fibre dimensionk equipped with a
connection that is compatible with the (anti-) holomorphic structure and the curvature of
which is of type(1,1). We denote by{Uα} a good open cover ofM.

Proposition 2. In case E is an anti-holomorphic vector bundle andeα is an anti-holomorphic
frame onUα one has

πzτ
E
Wick(s)|Uα = eαπzτWick(sα) = πzτWick(s

i
α) ⊗ eα,i, (47)

wheres ∈ Γ∞(E)[[λ]] has been written ass|Uα = eαsα = eα,is
i
α. Hence we have for all

f ∈ C∞(M)[[λ]]

s •Wick f |Uα = eα(sα�Wickf) = eα,i(s
i
α�Wickf ). (48)

Conversely, •Wick is globally well defined by Eq.(48) and thus it is completely determined
by �Wick.

Proof. To prove thatπzτEWick(s) is locally given byπzτWick(s
i
α) ⊗ eα,i, it is enough to

show that this expression solves theequations (41)what is easily done using that the
frameeα is anti-holomorphic. But then(48) is immediate from the definition of•Wick. It
remains to show that•Wick is globally defined by this equation. To this end, leteβ = eαφαβ
another anti-holomorphic frame whereφαβ denotes the anti-holomorphic transition matrix
onUα ∩ Uβ as inAppendix A. We find

eα(sα�Wickf) = eβφβα((φαβsβ)�Wickf) = eβ(sβ�Wickf )

on Uα ∩ Uβ, where we have used that the star product�Wick is of Wick type implying
(φαβsβ)�Wickf = φαβ(sβ�Wickf) since the entries ofφαβ are anti-holomorphic. �

Remark 3. In fact the preceding proposition states that for an anti-holomorphic vector
bundleE with a connection that is compatible with the anti-holomorphic structure the right
module multiplication•Wick is canonical in the sense that is independent of the connection.
Actually the statement of the proposition could also be proved without using the local
formula forπzτEWick(s), but only the Wick type properties of•Wick and�Wick according to
Theorem 3. To do so observe thatΓ∞(E)[[λ]] � s = eαsα = eα •Wick sα sinceeα is an
anti-holomorphic frame. But then

s •Wick f |Uα = (eα •Wick sα) •Wick f = eα •Wick (sα�Wickf ) = eα(sα�Wickf ).
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To see that this yields a global definition for•Wick we note the following equations that are
valid onUα ∩ Uβ

eβ = eαφαβ = eα •Wick φαβ and sα = φαβsβ = φαβ�Wicksβ (49)

φαβφβα = φαβ�Wickφβα = id and φαβφβγφγα = φαβ�Wickφβγ�Wickφγα = id,

(50)

whereφαβ denotes theclassical transition matrices, which imply the statement using
[36, Lemma 9.3].

As an immediate consequence of these observations we have the following corollary.

Corollary 1. Let E be an anti-holomorphic vector bundle and let•̃Wick be a�Wick right
module multiplication onΓ∞(E)[[λ]] that has the Wick type property, then•̃Wick coincides
with •Wick.

In contrast the bimodule multiplication•′
Wick drastically simplifies in caseE is a holo-

morphic vector bundle, but even in this case it actually depends on the connection∇E and
hence is not canonical like•Wick. Nevertheless, it is completely determined by the product
�′

Wick as we state it in the following proposition.

Proposition 3. In case E is a holomorphic vector bundle andeα is a holomorphic frame
andeα is the dual frame of the vector bundleE∗ onUα one has

πz̄τ
E
Wick(s)|Uα = 1

k
πz̄τ

′
Wick(s ⊗ eα,i)eα,i (51)

for all s ∈ Γ∞(E)[[λ]]. Hence we have for allA ∈ Γ∞(End(E))[[λ]]

A •′
Wick s|Uα = 1

k
(A�′

Wick(s ⊗ eα,i))eα,i. (52)

Moreover, •′
Wick is globally well defined by Eq.(52)and thus it is completely determined by

�′
Wick.

Proof. An easy computation using thateα is a holomorphic frame ofE∗ shows that the
expression given in(51) solves theequations (52). But then the local formula(52) follows
immediately. In fact this could also be proved directly just using the Wick type property of
�′

Wick and•′
Wick. To see this we observe that onUα we have

s = 1

k
(s ⊗ eα,i)eα,i = 1

k
(s ⊗ eα,i) •′

Wick eα,i

sinceeα is a holomorphic frame. But this implies that onUα

A •′
Wick s= 1

k
A •′

Wick ((s ⊗ eα,i) •′
Wick eα,i) = 1

k
(A�′

Wick(s ⊗ eα,i)) •′
Wick eα,i

= 1

k
(A�′

Wick(s ⊗ eα,i))eα,i.
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We now writeeα,i = φαβ
j
i eβ,j andeα,i = φαβ i

ke
β,k with φαβ n

r φαβ
r
i = δni . Using the Wick

type property of�′
Wick and•′

Wick and that the transition matricesφαβ,φαβ have holomorphic
entries we moreover get

(A�′
Wick(s ⊗ eα,i))eα,i = (A�′

Wick(s ⊗ eβ,k)�′
Wick(φ

αβ i
k id)) •′

Wick (φαβ
j
i eβ,j)

=A •′
Wick (((s ⊗ eβ,k) •′

Wick ((φ
αβ i

k id) •′
Wick (φαβ

j
i eβ,j))))

= (A�′
Wick(s ⊗ eβ,j))eβ,j

onUα ∩ Uβ and hence•′
Wick is globally well defined by(52). �

Corollary 2. Let E be a holomorphic vector bundle and let•̃′
Wick be a�′

Wick left module
multiplication onΓ∞(E)[[λ]] that has the Wick type property, then •̃′

Wick coincides with
•′

Wick.

6. Deformed Hermitian metrics

In this section, we consider a Hermitian fibre metrich for E which is assumed to be
either a holomorphic or anti-holomorphic vector bundle. Moreover, let∇E be the canonical
connection for(E, h). As in the preceding sections, we assumeΩ is of type(1,1) and in
addition we consider the case whereΩ is real, i.e.Ω̄ = Ω. Now h equipsΓ∞(End(E))
with a natural∗-involution defined byh(As, s′) = h(s, A∗s′) for A ∈ Γ∞(End(E)) and
s, s′ ∈ Γ∞(E). We extend this involution, together with the complex conjugation, to a
super-∗-involution ofW ⊗ Λ• ⊗ End(E) andW ⊗ Λ•, respectively. It is well known that
the fibrewise Wick product◦Wick is compatible with this∗-involution, i.e.(a ◦Wick b)

∗ =
(−1)degaadegabb∗◦Wick a

∗ for all a, b ∈W⊗Λ•⊗End(E). From the unique characterisations
of r′Wick andrWick the following lemma is straightforward, see also[35, Lemma 7].

Lemma 4. LetΩ = Ω̄ be real, then

(r′Wick)
∗ = r′Wick, rWick = rWick, (rEWick)

∗ = −rEWick (53)

and hence(D′
Wicka)

∗ = D′
Wicka

∗ andDWickb = DWick b̄ for a ∈ W ⊗ Λ• ⊗ End(E) and
b ∈ W⊗ Λ•. Moreover, we have(τ′

Wick(A))
∗ = τ′

Wick(A
∗) andτWick(f) = τWick(f̄ ) and

hence�′
Wick and�Wick are Hermitian deformations, i.e.

(A�′
WickB)

∗ = B∗�′
WickA

∗ and f�Wickg = ḡ�Wickf̄ . (54)

In a next step, we extend the fibre metrich to a metric onW ⊗ Λ• ⊗ E with values in
W⊗ Λ• by defining

H(f ⊗ α ⊗ s, g ⊗ β ⊗ s′) := f̄ ◦Wick g ⊗ ᾱ ∧ βh(s, s′). (55)

The following properties are immediate.1

1 In [35] an obvious sign was missing.
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Lemma 5. For a ∈W⊗ Λ• ⊗ End(E), Ψ,Ψ ′ ∈W⊗ Λ• ⊗ E andb ∈W⊗ Λ• we have

H(a ◦Wick Ψ,Ψ
′) = (−1)degaadegaΨH(Ψ, a∗ ◦Wick Ψ

′), (56)

H(Ψ,Ψ ′ ◦Wick b) = H(Ψ,Ψ ′) ◦Wick b, (57)

H(Ψ,Ψ ′) = (−1)degaΨdegaΨ
′
H(Ψ ′, Ψ). (58)

Now a simple computation using the preceding two lemmas yields the following compati-
bility of DWick with H

DWick(H(Ψ,Ψ
′)) = H(DE

WickΨ,Ψ
′) + (−1)degaΨH(Ψ,DE

WickΨ
′). (59)

As a consequence we can define a deformed Hermitian metrich by

h(s, s′) := σ(H(τEWick(s), τ
E
Wick(s

′))). (60)

Proposition 4. The maph is C[[λ]]- linear in the second argument and satisfies

h(s, s′) = h(s′, s) and h(s, s) ≥ 0, (61)

h(s, s′ •Wick f) = h(s, s′)�Wickf, (62)

h(A •′
Wick s, s

′) = h(s, A∗ •′
Wick s

′) (63)

for all s, s′ ∈ Γ∞(E)[[λ]], f ∈ C∞(M)[[λ]] andA ∈ Γ∞(End(E))[[λ]].

Here the positivity ofh is understood in the sense of[8].
From the shape of◦Wick, it is obvious thath(s, s′) = σ(H(πz̄τ

E
Wick(s), πz̄τ

E
Wick(s

′))) and
this implies the following lemma using the statements ofLemma 3.

Lemma 6. Let U ⊆ M be an open subset of M. In case s ors′ are locally holomorphic
sections onU we have

h(s, s′)|U = h(s, s′)|U. (64)

To conclude this section we now want to give an explicit local expression forh.

Proposition 5. In case E is an anti-holomorphic vector bundle andeα is an anti-holomorphic
frame onUα one has

h(s, s′)|Uα = siα�Wickh(eα,i, eα,j)�Wicks
′j
α , (65)

where we have writtens|Uα = eα,js
j
α ands′|Uα = eα,js

′j
α .

Proof. The proof is straightforward usingProposition 4, Lemma 6and the Wick type
property of•Wick. �

Remark 4. In fact it is easy to see that the expression forh(s, s′)|Uα given in the preceding
proposition globally defines the deformed metrich by similar arguments as inSection 5.
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Proposition 6. In case E is a holomorphic vector bundle andeα is a holomorphic frame
onUα andeα is the dual frame of the vector bundleE∗ onUα one has

h(s, s′)|Uα = 1

k2
h(eα,i, ((s ⊗ eα,i)∗�′

Wick(s
′ ⊗ eα,j))eα,j). (66)

Proof. Again the proof is easily done usingProposition 4, Lemma 6and the Wick type
property of•′

Wick. �

Remark 5. Again the above expression globally defines the metrich and hereh turns out
to be canonical in the sense that given a deformation of the metrich that satisfies(63) and
(64) it coincides withh.

7. Morita equivalence of Wick and anti-Wick products

In this section, we fix a series of closed two-formsΩ of type (1,1). Then consider the
Wick and anti-Wick star product constructed out ofΩ as inTheorem 1. Their characteristic
classes satisfy

c(�Wick) − c(�Wick) = −[RLcan] = 2πic1(Lcan), (67)

whence�Wick and�Wick are known to be Morita equivalent[9, Theorem 3.1]. Moreover,
as the difference of their characteristic classes is given by the Chern class ofLcan a Morita
equivalence bimodule is obtained by deformingΓ∞(Lcan) into a bimodule for�Wick from
the left and�Wick from the right. Finally, such a bimodule deformation necessarily exists.
However, the concrete bimodule structure usually depends on non-canonical choices, even
within its equivalence class of bimodule deformations, see e.g. the constructions in[8,9]
as well as the discussion in[7]. Thus one may ask the question whether in our particu-
lar situation there is acanonical construction, i.e. only using the Kähler geometry, of a
Morita equivalence bimodule structure forLcan. As we shall show now this is indeed the
case.

First we consider the spaceW⊗Λ•L, whereL = Γ∞(Lcan). We equipW⊗Λ• with the
fibrewise products◦Wick and◦Wick as before. But forW⊗Λ•L we usedifferentbimodule
multiplications, namely

a�WickΨ = S−1a ◦Weyl Ψ and Ψ�Wickb = Ψ ◦Weyl Sb, (68)

for a, b ∈ W ⊗ Λ• andΨ ∈ W ⊗ Λ•L. Then we indeed obtain a bimodule as a simple
computation shows.

Lemma 7. Using�Wick and�Wick the spaceW⊗Λ• ⊗L becomes a bimodule for(W⊗
Λ•, ◦Wick) from the left and for(W⊗ Λ•, ◦Wick) from the right.

Now let rWick andrWick be the curvature elements as inTheorem 1, where we assume to
have thesameΩ. Moreover, as connection∇Lcan we use the canonical connection induced
by the Kähler connection, see(A.3). Then we defineDL :W⊗Λ• ⊗L→W⊗Λ•+1 ⊗L
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explicitly by

DLΨ := −δΨ + DLΨ + i

λ
(rWick�WickΨ − (−1)degaΨΨ�WickrWick). (69)

Since the lowest orders ofrWick andrWick coincide the mapDL is well defined, i.e. it does
not produce negative powers ofλ.

Lemma 8. The mapDL is a module derivation alongDWick andDWick, respectively, i.e.

DL(a�WickΨ) = DWicka�WickΨ + (−1)degaaa�WickD
LΨ, (70)

DL(Ψ�Wickb) = DLΨ�Wickb + (−1)degaΨΨ�WickDWickb. (71)

Proof. This is a straightforward computation using the properties ofδ, DL, andS. �

Lemma 9. For the symplectic curvature R of the Kähler connection we have

R ◦Weyl Ψ = R�WickΨ + λ+Ψ and Ψ ◦Weyl R = Ψ�WickR − λ+Ψ, (72)

(DL)2 = i

λ
(R�WickΨ − Ψ�WickR). (73)

Proof. Eq. (72)follows directly from the definitions andSR= R + λ+. Moreover,(A.5)
together withLemma 1applied forE = Lcan and(72) implies(73). �

Theorem 4. We have(DL)2 = 0 and

σ : kerDL ∩W⊗ Λ0 ⊗ L→ Γ∞(Lcan)[[λ]] (74)

is aC[[λ]]- linear bijection with inverse denoted byτLcan. Hence

f�Wicks = σ(τWick(f)�Wickτ
Lcan(s)), (75)

s�Wickg = σ(τLcan(s)�WickτWick(g)) (76)

defines a bimodule structure onΓ∞(Lcan)[[λ]] for �Wick from the left and�Wick from the
right, deforming the classical bimodule structure ofΓ∞(Lcan).

Proof. To compute(DL)2 = 0, one has to useLemma 9and the particular properties of
rWick andrWick as inTheorem 1. Taking into account that we have used thesameΩ for
rWick andrWick it easily follows that(DL)2 = 0. The fact that(74) is a bijection is proved
in the usual fashion by examining the fixed point equation

τL(s) = s + δ−1
(
DLτL(s) + i

λ
rWick�Wickτ

L(s) − i

λ
τL(s)�WickrWick

)
(77)

for s ∈ Γ∞(Lcan)[[λ]] of the strictly contracting operator defined by the right-hand side,
analogously to[35, Theorem 3]. Then(75) and (76)obviously define a bimodule structure
deforming the classical one. �
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Corollary 3. The bimodule(Γ∞(Lcan)[[λ]] ,�Wick,�Wick) is a Morita equivalence bi-
module for�Wick and�Wick.

Proof. This follows from the general argument in[35, Proposition 1]. �

Remark 6. Clearly, the above construction is canonical in so far as it uses only the Käh-
ler geometry. Hence there exists a distinguished bimodule structure onΓ∞(Lcan)[[λ]] as
desired. Note, however, that�Wick and�Wick do not have any separation of variable prop-
erties.

Remark 7. Surprisingly, the Weyl product forΩ is not Morita equivalent to�Wick or
�Wick in general as their relative class is given byc(�Weyl)−c(�Wick) = −(1/2)[RLcan] =
πic1(Lcan). Thus their relative class needs not to be 2πi integral in general.
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Appendix A. Some Kähler geometry

In this appendix, we shall recall some basic structures on Kähler manifolds in order to
set up our notation and specify our sign conventions, see e.g.[27,38] for details.

Let (M, I, g, ω) be a Kähler manifold whereI denotes the complex structure,g the Käh-
ler metric, andω the symplectic Kähler form. SinceI is integrable, we have holomorphic
local coordinates around any point. Ifz1, . . . , zn are such holomorphic local coordinates
on U ⊆ M, then we use the abbreviationZk = ∂/∂zk and Z̄% = ∂/∂z̄%. Locally, theZk

span the eigenbundle ofI to eigenvalue+i, while the Z̄% span the eigenbundle ofI to
eigenvalue−i. In such holomorphic coordinates, the Kähler metric and the Kähler form are
given by

g|U = 1

2
gk%̄ dzk ∨ dz̄% and ω|U = i

2
gk%̄ dzk ∧ dz̄%. (A.1)

By
∧(p,q)

T ∗M we denote the bundle ofp + q forms of type(p, q). In particular,

Lcan :=
∧(n,0)

T ∗M (A.2)

is the so-calledcanonical line bundleof ‘holomorphicn-forms’. Locally, a sections ∈
Γ∞(Lcan) can be written ass|U = f dz1 ∧ · · · ∧ dzn with f ∈ C∞(U). The Kähler
connection∇ extends to a connection∇Lcan for Lcan which locally is given by

∇Lcan
X s = (X(f) − dzk(X)Γ %

k%f)dz1 ∧ · · · ∧ dzn. (A.3)
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HereΓ %
km = dz%(∇Zk

Zm) are the Christoffel symbols of the Kähler connection. AsLcan is

a line bundle the curvature of∇Lcan is just a two-formRLcan ∈ Γ∞(
∧(1,1)

T ∗M) which is
of type(1,1). Locally one has

RLcan = Γ
j

kj,%̄
dzk ∧ dz̄% = −R

j

jk%̄
dzk ∧ dz̄%, (A.4)

whereRj

mk̄%
= dzj(R̂(Zk, Z̄%)Zm) are the components of the curvature tensorR̂ of ∇. The

Ricci form+ is defined by

+ = i

2
RLcan = − i

2
R
j

jk%̄
dzk ∧ dz̄%, (A.5)

whence we obtain the following relations for the (first) Chern classc1(Lcan) of the canonical
line bundle

c1(Lcan) = i

2π
[RLcan] = 1

π
[+] ∈ H2

deRham(M,Z). (A.6)

Note that(1/π)+ is integral but(1/2π)+ doesnotneed to be integral.
The symplectic curvature tensorR ∈ Γ∞(

∨(1,1)
T ∗M ⊗∧(1,1)

T ∗M) is defined as usual
by

R(X, Y,Z,W) = ω(X, R̂(Z,W)Y) (A.7)

for X, Y,Z,W ∈ Γ∞(TM) and locally one has

R = i

2
gkm̄R

m̄

%̄ij̄
dzk ∨ dz̄% ⊗ dzi ∧ dz̄j. (A.8)

The fact that the Kähler connection is metric impliesgkm̄R
m̄

%̄ij̄
= −gm%̄R

m
kij̄

whence one

easily obtains

∆fibR = +. (A.9)

We note that̄R = R and+̄ = + are real tensor fields whileRLcan = −RLcan is imaginary.
Now letE → M be a holomorphic vector bundle of fibre dimensionkwith Hermitian fibre

metrich. By e = (e1, . . . , ek)we denote a local holomorphic frame ofE, i.e.ei ∈ Γ∞(E|U)
are holomorphic local base sections ofE. Any local sections ∈ Γ∞(E|U) can be written
ass = eis

i with unique local smooth functionssi ∈ C∞(U). Thens is holomorphic if and
only if thesi are holomorphic. Different local holomorphic frameseα andeβ onUα andUβ,
respectively, give rise to holomorphic transition matricesφαβ = φ−1

βα ∈ Mk(C
∞(Uα ∩Uβ))

by eβ = eαφαβ. As usual they satisfy the co-cycle identity

φαβφβγφγα = id (A.10)

on triple overlapsUα ∩ Uβ ∩ Uγ . The coefficients of a sections transform according to
sα = φαβsβ.

A connection∇E for E gives rise to a matrixA of local connection one-formsA ∈
Mk(Γ

∞(T ∗U)) with respect to a local holomorphic framee by

∇E
Xe = −ieA(X) for X ∈ Γ∞(TM). (A.11)
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Then∇E is called compatible with the holomorphic structure if∇E
Xs = 0 for all locally

holomorphic sectionss and all vector fieldsX of type(0,1). Equivalently, the connection
one-formsA with respect to any holomorphic frame are of type(1,0). The connection is
called compatible with the Hermitian fibre metric if

X(h(s, s′)) = h(∇E
X̄
s, s′) + h(s,∇E

Xs
′) (A.12)

for allX ∈ Γ∞(TM)ands, s′ ∈ Γ∞(E). This gives the local condition dH = i(A∗H−HA),
whereH ∈ Mk(C

∞(U)) is the local Hermitian matrixHij = h(ei, ej) defined by the
framee. It is well known that there exists a unique connection∇E which is compatible
with both structures, the holomorphic structure and the Hermitian fibre metric, see e.g.
[38, Chapter III, Section 2]. We shall refer to this connection as thecanonical connection
of (E, h). Locally in a holomorphic frame one has

A = iH−1∂H. (A.13)

Moreover, the curvature tensorRE ∈ Γ∞(
∧2

T ∗M ⊗ End(E)) is of type(1,1). Finally,
analogous statements hold for anti-holomorphic vector bundles as well.
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